Genetic Variation and Divergence of Genes Involved in Leaf Adaxial-Abaxial Polarity Establishment in Brassica rapa
نویسندگان
چکیده
Alterations in leaf adaxial-abaxial (ad-ab) polarity are one of the main factors that influence leaf curvature. In Chinese cabbage, leaf incurvature is an essential prerequisite to the formation of a leafy head. Identifying ad-ab patterning genes and investigating their genetic variation may facilitate elucidation of the mechanisms underlying leaf incurvature during head formation. Comparative genomic analysis of 45 leaf ad-ab patterning genes in Brassica rapa based on 26 homologs of Arabidopsis thaliana indicated that these genes underwent expansion and were retained after whole genome triplication (WGT). We also assessed the nucleotide diversity and selection footprints of these 45 genes in a collection of 94 Brassica rapa accessions that were composed of heading and non-heading morphotypes. Six of the 45 genes showed significant negative Tajima's D indices and nucleotide diversity reduction in heading accessions compared to those in non-heading accessions, indicating that they underwent purifying selection. Further testing of the BrARF3.1 gene, which was one of the selection signals from a larger collection, confirmed that purifying selection did occur. Our results provide genetic evidence that ad-ab patterning genes are involved in leaf incurvature, which is associated with formation of a leafy head, as well as promote an understanding of the genetic mechanism underlying leafy head formation in Chinese cabbage.
منابع مشابه
Novel as1 and as2 defects in leaf adaxial-abaxial polarity reveal the requirement for ASYMMETRIC LEAVES1 and 2 and ERECTA functions in specifying leaf adaxial identity.
The shoot apical meristem (SAM) of seed plants is the site at which lateral organs are formed. Once organ primordia initiate from the SAM, they establish polarity along the adaxial-abaxial, proximodistal and mediolateral axes. Among these three axes, the adaxial-abaxial polarity is of primary importance in leaf patterning. In leaf development, once the adaxial-abaxial axis is established within...
متن کاملThe complex of ASYMMETRIC LEAVES (AS) proteins plays a central role in antagonistic interactions of genes for leaf polarity specification in Arabidopsis
Leaf primordia are born around meristem-containing stem cells at shoot apices, grow along three axes (proximal-distal, adaxial-abaxial, medial-lateral), and develop into flat symmetric leaves with adaxial-abaxial polarity. Axis development and polarity specification of Arabidopsis leaves require a network of genes for transcription factor-like proteins and small RNAs. Here, we summarize present...
متن کاملThe Arabidopsis organelle-localized glycyl-tRNA synthetase encoded by EMBRYO DEFECTIVE DEVELOPMENT1 is required for organ patterning
Leaves develop as planar organs, with a morphology that is specialized for photosynthesis. Development of a planar leaf requires genetic networks that set up opposing adaxial and abaxial sides of the leaf, which leads to establishment of dorsoventral polarity. While many genes have been identified that regulate adaxial and abaxial fate there is little information on how this is integrated with ...
متن کاملYUCCA genes are expressed in response to leaf adaxial-abaxial juxtaposition and are required for leaf margin development.
During leaf development, the formation of leaf adaxial-abaxial polarity at the primordium stage is crucial for subsequent leaf expansion. However, little is known about the genetic control from polarity establishment to blade outgrowth. The leaf margin, comprising elongated margin cells and hydathodes, is thought to affect leaf expansion. Here, we show that mutants with defective leaf polarity ...
متن کاملDistinct regulation of adaxial-abaxial polarity in anther patterning in rice.
Establishment of adaxial-abaxial polarity is essential for lateral organ development. The mechanisms underlying the polarity establishment in the stamen remain unclear, whereas those in the leaf are well understood. Here, we investigated a rod-like lemma (rol) mutant of rice (Oryza sativa), in which the development of the stamen and lemma is severely compromised. We found that the rod-like stru...
متن کامل